Participant’s Handbook

Module 3k:
Symptoms –
Fatigue
Emanuel LL, Ferris FD, von Gunten CF, Von Roenn J.
EPEC-O: Education in Palliative and End-of-life Care for Oncology.
© The EPEC Project™ Chicago, IL, 2005

ISBN: 0-9714180-9-8

Permission to reproduce EPEC-O curriculum materials is granted for non-commercial educational purposes only, provided that the above attribution statement and copyright are displayed. Commercial groups hosting not-for-profit programs must avoid use of EPEC-O materials with products, images or logos from the commercial entity.

The EPEC Project™ was created with the support of the American Medical Association and the Robert Wood Johnson Foundation. The EPEC-O curriculum is produced by The EPEC Project™ with major funding provided by the National Cancer Institute, with supplemental funding provided by the Lance Armstrong Foundation. The American Society of Clinical Oncology partners with the EPEC-O Project in dissemination of the EPEC-O Curriculum. Acknowledgment and appreciation are extended to Northwestern University’s Feinberg School of Medicine, which houses The EPEC Project.

Special thanks to the EPEC-O Team, the EPEC-O Expert Panel, and all other contributors.

Accreditation Statement

The Northwestern University Feinberg School of Medicine is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.

Visit www.epec.net to order EPEC materials, access On-line Distance Learning, or for further information.

Contact EPEC by E-mail at info@epec.net, or

The EPEC Project™
750 N. Lake Shore Drive, Suite 601
Chicago, IL 60611
USA
Phone: +1 (312) 503-EPEC (3732)
Fax: +1 (312) 503-4355
Case

L.M. is an 88-year-old woman with a long history of chronic obstructive pulmonary disease. Four months ago she developed hemoptysis and sought evaluation. Chest x-ray demonstrated a large right lower lobe lung mass. Computed tomography scan of the chest revealed a 6 cm right lower lobe lung mass with bulky mediastinal adenopathy. Fine need aspiration of the lung mass confirmed a diagnosis of non-small cell lung cancer, probably squamous. The patient declined further evaluation or treatment because she, overall, felt well. She returns today for follow-up. Her only complaint is fatigue.

“Doctor, I can’t understand it. I’m tired all the time. I don’t have the energy to do any of my usual activities. It’s so frustrating to me. Can’t something be done about this?”

* This case is not on an EPEC-O Curriculum trigger tape.

Introduction

Cancer-related fatigue is a persistent sense of tiredness, which may be secondary to cancer or its treatment and interferes with usual functioning. It is unrelieved by rest and may affect both physical and mental capacity.¹

Prevalence

Fatigue is one of the most common symptoms. Its prevalence is high, with estimates ranging from 80% to 96%.²,³,⁴ It is also the symptom with the greatest impact on everyday life.⁵ Among cancer outpatients, 58% report that fatigues affect them ‘somewhat or very much.’ This is more common than pain (22%) or nausea and vomiting (18%).

The experience of fatigue varies with type and stage of cancer. It is experienced by 50% of patients with non-small cell lung cancer and 15% of those with breast cancer. Nearly 80% of patients with advanced disease experience fatigue.⁵ In contrast, the prevalence of fatigue in the general population is only 6%.

Fatigue is associated with specific cancer treatments. It occurs after surgery, chemotherapy, radiation therapy, and treatment with biologic response modifiers, such as alpha interferon and interleukin-2.⁶,⁷

Patterns of fatigue vary. Treatment with cyclic chemotherapy results in peak fatigue scores a few days after treatment, with improvement over the cycle duration.⁸,⁹ By contrast, a course of fractionated radiotherapy is more likely to cause cumulative fatigue, with onset 7-10 days into therapy and peak severity at the conclusion of treatment.¹⁰

Cancer-related fatigue may persist for a prolonged period of time, even years. Up to 30% of cancer survivors report persistent fatigue for years after completion of antineoplastic therapy.¹¹
Prognosis
Fatigue is a debilitating clinical symptom. The presence of fatigue, or its severity, has not been demonstrated to provide independent prognostic information. However, from a patient perspective, progressive fatigue is feared, not only as a symptom, but as a harbinger of progressive disease.

Pathophysiology
The etiology of fatigue is multifactorial and a result of both physiologic and psychosocial factors. Proposed mechanisms for fatigue include abnormalities in energy metabolism related to increased need, decreased substrate, or the production of abnormal substances that impair metabolism or normal function of muscle. An alternate proposed mechanism is the increased production of cytokines; particularly interleukin-6. Depression, sleep disorders, and neuromuscular dysfunction are all potential contributors in the development of fatigue. To date, there is no clear evidence to support any of these mechanisms, and further research is needed.

Assessment
Fatigue is a subjective experience and, like the assessment of pain, is best evaluated by patient report. The National Comprehensive Cancer Network (NCCN) recommends the following algorithm.

- Screen each patient for the presence and severity of fatigue.
- Rate the severity of fatigue on a 0-10 scale, with 0 being ‘no fatigue’ and 10 ‘the worst fatigue imaginable.’ If fatigue is moderate (4-6, on a 0-10 scale) or worse, initiate a thorough history and physical examination.
- Include the disease status and treatment; rule out recurrent or progressive disease; review current medications and recent changes; and pursue an in-depth assessment of fatigue, including its onset, pattern, duration, and change over time, associated or alleviating factors, and interference with function.
- Evaluate the patient for the presence of:
 - Treatable, contributing factors, eg, pain, depression, insomnia, anemia, malnutrition
 - Deconditioning and comorbidities, eg, infection, cardiac, pulmonary, renal, hepatic, neurologic, or endocrine dysfunction

(See Table 1)
Table 1. Potential predisposing etiologies of cancer-related fatigue

<table>
<thead>
<tr>
<th>Psychosocial factors</th>
<th>Anxiety disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Depressive disorders</td>
</tr>
<tr>
<td></td>
<td>Stress-related</td>
</tr>
<tr>
<td></td>
<td>Environmental</td>
</tr>
<tr>
<td>Physiologic factors</td>
<td>Treatment-related</td>
</tr>
<tr>
<td></td>
<td>Chemotherapy</td>
</tr>
<tr>
<td></td>
<td>Radiation therapy</td>
</tr>
<tr>
<td></td>
<td>Surgery</td>
</tr>
<tr>
<td></td>
<td>Biologic response modifiers</td>
</tr>
<tr>
<td>Malignancies</td>
<td>Anemia</td>
</tr>
<tr>
<td>Intercurrent System Disorders</td>
<td>Infection</td>
</tr>
<tr>
<td></td>
<td>Pulmonary disorders</td>
</tr>
<tr>
<td></td>
<td>Hepatic failure</td>
</tr>
<tr>
<td></td>
<td>Cardiac failure</td>
</tr>
<tr>
<td></td>
<td>Renal failure</td>
</tr>
<tr>
<td></td>
<td>Malnutrition</td>
</tr>
<tr>
<td></td>
<td>Neuromuscular disease</td>
</tr>
<tr>
<td></td>
<td>Dehydration or electrolyte imbalance</td>
</tr>
<tr>
<td></td>
<td>Endocrine dysfunction</td>
</tr>
<tr>
<td>Alterations in activity level</td>
<td>Deconditioning</td>
</tr>
<tr>
<td>Sleep disorders</td>
<td>Use of centrally acting medications</td>
</tr>
<tr>
<td></td>
<td>Opioids</td>
</tr>
<tr>
<td></td>
<td>Antiemetics</td>
</tr>
<tr>
<td></td>
<td>Hypnotics</td>
</tr>
<tr>
<td></td>
<td>Anxiolytics</td>
</tr>
<tr>
<td></td>
<td>Antihistamines</td>
</tr>
</tbody>
</table>

Management

Intervention for patients with cancer-related fatigue, particularly for those on active treatment, begins with education about the known patterns of fatigue during and following treatment. Reassure the patient that treatment-related fatigue is not necessarily an indicator of progressive disease.15
Treat reversible causes and contributing factors. Review medications and discontinue centrally active agents. Correct sleep disorders or metabolic abnormalities.

Treat depression, if present, as it is associated with fatigue but does not appear to be a major factor in most patients. Treat pain, if present, as it can be successfully controlled in more than 90% of patients and is frequently associated with fatigue. Less common, reversible etiologies of fatigue include hypothyroidism and hypogonadism.

Anemia

Anemia is the most common cause of reversible fatigue and occurs in about half of all cancer patients undergoing treatment. Multiple, randomized, controlled trials have demonstrated clinically significant improvement in overall quality of life in association with an increase in hematocrit. Increases in quality of life are greatest when the hemoglobin is in the range of 11-13 gm/dl.

Erythropoietin alfa administered to prevent significant anemia can sustain quality of life, energy level, ability to perform daily activities and prevent transfusions. This may signal a shift in the paradigm for thinking about when to initiate erythropoietic agents. Dosing options include:

- Erythropoietin alpha, 40,000 IU SC once q week
- Darbepoetin alfa, 200 mcg SC, once q 2 weeks. Weekly dosing, ie, ‘front loading,’ results in more rapid improvements in quality of life than q 2 week therapy.

Non-pharmacologic therapies

A variety of non-pharmacologic therapies have been evaluated and utilized for the treatment of fatigue.

Excessive rest contributes to cancer-related fatigue rather than lessening it. Structured exercise programs have been shown to improve fatigue as well as the patient’s emotional and overall sense of well-being. The beneficial effects of exercise have been observed in patients undergoing cancer treatment as well as in survivors who have already completed their therapy. Exercise programs are effective for patients undergoing chemotherapy, bone marrow transplantation, or radiation therapy. Additionally, whether the prescribed exercise is walking or bicycling or some combination, the outcomes are equivalent.

A simple, practical prescription for exercise might include walking 20 minutes a day, 10 minutes out and 10 minutes back. Additional benefits of exercise include potential improvements in appetite, weight, strength, self image, and bowel habits.

If fatigue is severe, energy conservation strategies are often recommended. Such strategies include setting priorities to perform the tasks that are most important to the patient first, scheduling activities at times of peak energy, postponing non-essential
activities, structuring a daily routine, and attending to one activity at a time. Consultation with an occupational therapist may be valuable for identifying the best strategies for an individual patient.

Pharmacologic therapies
Numerous pharmacologic therapies have been recommended for cancer-related fatigue but, to date, have not been rigorously evaluated in controlled trials.

Methylphenidate can improve cancer and AIDS-related fatigue. A standard dosing regimen is:

- Methylphenidate, 5-30 mg PO daily

Response rates up to 100% have been noted.\(^{31,35}\) Start with 2.5 to 5 mg every morning and noon. The recommendation for this fixed dose schedule is largely anecdotal, arising from concerns that treatment late in the day will cause insomnia. A recent preliminary report of patient-controlled methylphenidate for the management of cancer related fatigue raises questions about this assumption.\(^{31}\) Significant improvement in fatigue, functional and physical well-being was reported by patients taking patient controlled analgesics. All of the patients took afternoon and evening doses and 93% took 3 or more doses daily. The dose can be increased every few days until the desired effect or toxicity is apparent. The risk of toxicity increases as the dose increases, with few patients requiring greater than 60 mg/day for effect. Adverse effects include anorexia, insomnia, anxiety, confusion, tremor, other organic brain syndromes, and tachycardia. The beneficial effects of methylphenidate may decrease over time, and dose escalation may be needed to maintain benefit.

Corticosteroids may improve fatigue for patients with advanced disease and fatigue.\(^{36,37}\) Dosing options include:

- Dexamethasone, 4 mg PO q AM
- Prednisone, 20 mg PO daily\(^ {38}\)

Modafinil is a CNS stimulant approved for the treatment of narcolepsy in doses of 200 mg/day. This agent has been shown to improve fatigue in patients with multiple sclerosis.\(^ {39}\) A standard dosing regimen is:

- Modafinil, start with 100 mg in the morning and at noon. Titrate to effect, up to the maximum does of 400 mg/day.

Amantadine has been used to treat fatigue in patients with multiple sclerosis but has not been evaluated in the setting of cancer-related fatigue.

Summary
Despite the high prevalence and altered quality of life associated with fatigue, there is little knowledge about pathogenesis or management. Treatment requires careful
assessment of potentially reversible factors and utilization of both pharmacologic and non-pharmacologic interventions. Provide all patients with information about treatment-related fatigue and recommendations about the effect of exercise on fatigue. Anemia is an important, reversible cause of fatigue, treat it preventively. Fatigue is often not readily reversible. A trial of a pharmacologic stimulant, such as methylphenidate, is an option for treatment.

Key take-home points

1. Fatigue is the symptom with the greatest impact on every day life.
2. The pattern of the treatment related fatigue varies with the type of treatment.
3. Corticosteroids and psychostimulants may have a beneficial effect.
4. Anemia, though an important cause of fatigue, may not be the therapy-resistant etiology of fatigue in many patients with cancer.

Pearls

1. Peak fatigue after chemotherapy occurs a few days after treatment.
2. Encourage people to exercise. Too much ‘rest’ increases fatigue.
3. If possible, recommend exercise along with adjuvant (or other) chemotherapy.
4. Anemia is the most common cause of reversible fatigue. Increases in quality of life appear greatest when the hemoglobin is in the range of 11-13 gm/dl.

Pitfalls

1. Doing nothing. Try something! This is a major debilitating symptom.
2. Too much rest may lead to progressive muscle wasting and further reduction of energy level.

References

 This is a review which focuses on the etiology of fatigue, its treatment and impact of quality of life.

 Fatigue can be a prevalent and serious problem for the individual with cancer and can negatively impact the individual's quality of life. This study investigated the prevalence of clinical fatigue among patients with cancer and how the fatigue cancer patient's experience compares with the fatigue people experience as a function of their normal daily activities.
For cancer patients, fatigue is a disturbing symptom caused by many factors. Since fatigue is the most common adverse effect of localized radiation to the breast, this treatment provides a unique opportunity to follow patients prospectively as they develop one type of fatigue. This trial evaluated the effect of radiation treatment on fatigue in 15 women with Stage I or II node-negative breast cancer who were otherwise healthy.

Although fatigue is the most common symptom reported by cancer patients and has serious adverse effects on quality of life, it remains poorly understood. Using a telephone survey of patients and their caregivers, the epidemiology of cancer-related fatigue from the perspectives of the patient, primary caregiver, and oncologist is characterized.

A cross-sectional, questionnaire-based survey was used to investigate cancer patients' experience of fatigue and their perceptions about the causes, management and impact of this symptom.

This study describes the experience of fatigue over time in patients with cancer receiving treatment with interferon alpha.

This paper presents a comprehensive view of current knowledge on fatigue to guide present nursing practice with patients receiving biotherapy and to provide direction for future nursing and clinical trial research.

This study describes the patterns of cancer-related fatigue (CRF) and vigor in patients receiving chemotherapy or radiation therapy.

This article describes a study that employed a daily diary with the aim of prospectively charting the onset, pattern, duration, intensity, and distress associated with fatigue in 109 patients receiving chemotherapy.

To assess the prevalence, course, and prognosis of fatigue over the course of radiotherapy, seventy six patients with breast cancer receiving external radiation therapy were followed longitudinally from the onset of treatment to 6 months post-treatment.

This review explores the epidemiology, possible etiologies, and management of cancer-related fatigue.

This is a phase I study of recombinant human IL-6 in patients with refractory advanced malignancies to determine its pharmacokinetics, toxicities, and possible immunologic and antitumor effects.

This phase I trial evaluates the hematologic effects of recombinant human interleukin-6 (rhIL-6, Escherichia coli, SDZ ILS 969, IL-6) and determines its toxicity profile in 22 patients with various myelodysplastic syndromes (MDS).

These guidelines propose a treatment algorithm in which patients are evaluated regularly for fatigue, using a brief screening instrument, and are treated as indicated by their fatigue level.

A self-regulation theory of how patients cope with events that occur during physical illness that has received substantial support from research is described.

This randomized clinical trial tested whether paroxetine, a selective serotonin reuptake inhibitor antidepressant known to modulate brain serotonin, would reduce fatigue in cancer patients and whether any reduction was related to depression.

This trial evaluated the impact of treatment on the mean change in hemoglobin level, the proportion of patients achieving a hemoglobin response, the time to response, and the mean change in Functional Assessment of Cancer Therapy-Fatigue Scale scores.

This is a prospective open-label study to evaluate efficacy, safety, and quality of life (QOL) changes with epoetin alfa therapy for anemia in patients with nonmyeloid malignancies.
Anemia resulting from cancer, or its treatment, is an important clinical problem increasingly treated with the recombinant hematopoietic growth factor erythropoietin. To address uncertainties regarding indications and efficacy, the American Society of Clinical Oncology and the American Society of Hematology developed and presented an evidence-based clinical practice guideline for the use of epoetin in patients with cancer.

Data from two open-label, community-based trials of epoetin alfa therapy that enrolled 4382 anemic cancer patients undergoing chemotherapy were used to evaluate the relationship between hemoglobin changes and quality of life changes.

Breast cancer patients (N = 354) receiving chemotherapy were randomly assigned in 1:1 ratio to epoetin alfa (40,000 U QW) or standard of care to assess the impact on hemoglobin levels, improvement in quality of life, and frequency of transfusions.

The analysis presents the quality of life responses to darbepoetin alfa 3.0 mcg/kg administered with fatigue who are undergoing chemotherapy.

The objective of the current analysis was to evaluate the relative efficacy of darbepoetin alfa (Q2W) and rHuEPO (QW or TIW).

This study evaluated the consistency of hemoglobin endpoint results in multiple front-loading maintenance studies and compared results of front loading to standard therapy.

© EPEC Project, 2005 Module 3k: Symptoms – Fatigue Page M3k-11
This study examined the effect of a supervised, aerobic exercise program on change in body weight and composition (multi-site subcutaneous skinfold measures, percent body fat, and lean body weight) of women undergoing adjuvant chemotherapy for breast cancer.

This study examined the effects of a comprehensive rehabilitation program on facilitating physical and psychosocial adaptation of women with breast cancer who are receiving adjuvant chemotherapy.

The current study evaluated the impact of aerobic exercise on fatigue and psychological distress in cancer patients undergoing chemotherapy.

This study describes the patterns of daily fatigue in women with breast cancer who did and did not exercise while receiving the first three cycles of adjuvant chemotherapy.

The feasibility and effects of aerobic training in the rehabilitation of cancer patients after completing high dose chemotherapy was evaluated in this pilot study.

This article presents an overview of exercise interventions in cancer patients during and after treatment and evaluate does-training response considering type, frequency, volume, and intensity of training along with expected physiological outcomes.

This article examines fatigue from a rehabilitation perspective. Application of innovations in therapeutic exercise training, diet therapy, sleep therapy, cognitive therapy, and pharmacologic therapy and their attendant rationales are discussed. From clinical as well as research perspectives of palliation and rehabilitation, the manifestations of fatigue are better appreciated if fatigue is conceptualized as a syndrome, namely, cancer-related fatigue syndrome (CRFS).

This is a 14-day, randomized, double-blind crossover trial carried out to compare an oral glucocorticoid, methylprednisolone, against placebo for the relief of pain and other symptoms in 40 terminally ill cancer patients.

The results of treatment with low-dose prednisone for patients with prostate cancer and symptomatic bone metastases with progression after earlier treatment with estrogens and/or orchidectomy, is presented. Response to treatment was assessed by requirement for analgesics, by the McGill-Melzack pain questionnaire, and by a series of 17 linear analog self-assessment scales relating to pain and to various aspects of quality of life.

This placebo-controlled trial assessed the efficacy and safety of modafinil for the treatment of fatigue in multiple sclerosis.